Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
JAMIA Open ; 5(2): ooac041, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1948353

ABSTRACT

Objective: To determine whether a machine learning model can detect SARS-CoV-2 infection from physiological metrics collected from wearable devices. Materials and Methods: Health care workers from 7 hospitals were enrolled and prospectively followed in a multicenter observational study. Subjects downloaded a custom smart phone app and wore Apple Watches for the duration of the study period. Daily surveys related to symptoms and the diagnosis of Coronavirus Disease 2019 were answered in the app. Results: We enrolled 407 participants with 49 (12%) having a positive nasal SARS-CoV-2 polymerase chain reaction test during follow-up. We examined 5 machine-learning approaches and found that gradient-boosting machines (GBM) had the most favorable validation performance. Across all testing sets, our GBM model predicted SARS-CoV-2 infection with an average area under the receiver operating characteristic (auROC) = 86.4% (confidence interval [CI] 84-89%). The model was calibrated to value sensitivity over specificity, achieving an average sensitivity of 82% (CI ±âˆ¼4%) and specificity of 77% (CI ±âˆ¼1%). The most important predictors included parameters describing the circadian heart rate variability mean (MESOR) and peak-timing (acrophase), and age. Discussion: We show that a tree-based ML algorithm applied to physiological metrics passively collected from a wearable device can identify and predict SARS-CoV-2 infection. Conclusion: Applying machine learning models to the passively collected physiological metrics from wearable devices may improve SARS-CoV-2 screening methods and infection tracking.

2.
J Med Internet Res ; 23(2): e26107, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1574541

ABSTRACT

BACKGROUND: Changes in autonomic nervous system function, characterized by heart rate variability (HRV), have been associated with infection and observed prior to its clinical identification. OBJECTIVE: We performed an evaluation of HRV collected by a wearable device to identify and predict COVID-19 and its related symptoms. METHODS: Health care workers in the Mount Sinai Health System were prospectively followed in an ongoing observational study using the custom Warrior Watch Study app, which was downloaded to their smartphones. Participants wore an Apple Watch for the duration of the study, measuring HRV throughout the follow-up period. Surveys assessing infection and symptom-related questions were obtained daily. RESULTS: Using a mixed-effect cosinor model, the mean amplitude of the circadian pattern of the standard deviation of the interbeat interval of normal sinus beats (SDNN), an HRV metric, differed between subjects with and without COVID-19 (P=.006). The mean amplitude of this circadian pattern differed between individuals during the 7 days before and the 7 days after a COVID-19 diagnosis compared to this metric during uninfected time periods (P=.01). Significant changes in the mean and amplitude of the circadian pattern of the SDNN was observed between the first day of reporting a COVID-19-related symptom compared to all other symptom-free days (P=.01). CONCLUSIONS: Longitudinally collected HRV metrics from a commonly worn commercial wearable device (Apple Watch) can predict the diagnosis of COVID-19 and identify COVID-19-related symptoms. Prior to the diagnosis of COVID-19 by nasal swab polymerase chain reaction testing, significant changes in HRV were observed, demonstrating the predictive ability of this metric to identify COVID-19 infection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/physiopathology , Heart Rate/physiology , Wearable Electronic Devices , Adult , COVID-19/virology , Circadian Rhythm/physiology , Female , Health Personnel , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
3.
J Med Internet Res ; 23(9): e31295, 2021 09 13.
Article in English | MEDLINE | ID: covidwho-1352772

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in a high degree of psychological distress among health care workers (HCWs). There is a need to characterize which HCWs are at an increased risk of developing psychological effects from the pandemic. Given the differences in the response of individuals to stress, an analysis of both the perceived and physiological consequences of stressors can provide a comprehensive evaluation of its impact. OBJECTIVE: This study aimed to determine characteristics associated with longitudinal perceived stress in HCWs and to assess whether changes in heart rate variability (HRV), a marker of autonomic nervous system function, are associated with features protective against longitudinal stress. METHODS: HCWs across 7 hospitals in New York City, NY, were prospectively followed in an ongoing observational digital study using the custom Warrior Watch Study app. Participants wore an Apple Watch for the duration of the study to measure HRV throughout the follow-up period. Surveys measuring perceived stress, resilience, emotional support, quality of life, and optimism were collected at baseline and longitudinally. RESULTS: A total of 361 participants (mean age 36.8, SD 10.1 years; female: n=246, 69.3%) were enrolled. Multivariate analysis found New York City's COVID-19 case count to be associated with increased longitudinal stress (P=.008). Baseline emotional support, quality of life, and resilience were associated with decreased longitudinal stress (P<.001). A significant reduction in stress during the 4-week period after COVID-19 diagnosis was observed in the highest tertial of emotional support (P=.03) and resilience (P=.006). Participants in the highest tertial of baseline emotional support and resilience had a significantly different circadian pattern of longitudinally collected HRV compared to subjects in the low or medium tertial. CONCLUSIONS: High resilience, emotional support, and quality of life place HCWs at reduced risk of longitudinal perceived stress and have a distinct physiological stress profile. Our findings support the use of these characteristics to identify HCWs at risk of the psychological and physiological stress effects of the pandemic.


Subject(s)
COVID-19 , Pandemics , Adult , COVID-19 Testing , Female , Health Personnel , Humans , New York City , Quality of Life , SARS-CoV-2 , Stress, Physiological , Stress, Psychological/epidemiology
4.
JMIR Form Res ; 5(5): e26590, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1192071

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in increased strain on health care systems and negative psychological effects on health care workers (HCWs). This is anticipated to result in long-term negative mental health effects on the population, with HCWs representing a particularly vulnerable group. The scope of the COVID-19 pandemic necessitates the development of a scalable mental health platform to provide services to large numbers of at-risk or affected individuals. The Mount Sinai Health System in New York City was at the epicenter of the pandemic in the United States. OBJECTIVE: The Center for Stress, Resilience, and Personal Growth (CSRPG) was created to address the current and anticipated psychological impact of the pandemic on the HCWs in the health system. The mission of the Center is to support the resilience and mental health of employees through educational offerings, outreach, and clinical care. Our aim was to build a mobile app to support the newly founded Center in its mission. METHODS: We built the app as a standalone digital platform that hosts a suite of tools that users can interact with on a daily basis. With consideration for the Center's aims, we determined the overall vision, initiatives, and goals for the Wellness Hub app, followed by specific milestone tasks and deliverables for development. We defined the app's primary features based on the mental health assessment and needs of HCWs. Feature definition was informed by the results of a resilience survey widely distributed to Mount Sinai HCWs and by the resources offered at CSRPG, including workshop content. RESULTS: We launched our app over the course of two phases, the first phase being a "soft" launch and the second being a broader launch to all of Mount Sinai. Of the 231 HCWs who downloaded the app, 173 (74.9%) completed our baseline assessment of all mental health screeners in the app. Results from the baseline assessment show that more than half of the users demonstrate a need for support in at least one psychological area. As of 3 months after the Phase 2 launch, approximately 55% of users re-entered the app after their first opening to explore additional features, with an average of 4 app openings per person. CONCLUSIONS: To address the mental health needs of HCWs during the COVID-19 pandemic, the Wellness Hub app was built and deployed throughout the Mount Sinai Health System. To our knowledge, this is the first resilience app of its kind. The Wellness Hub app is a promising proof of concept, with room to grow, for those who wish to build a secure mobile health app to support their employees, communities, or others in managing and improving mental and physical well-being. It is a novel tool offering mental health support broadly.

5.
Front Immunol ; 12: 636289, 2021.
Article in English | MEDLINE | ID: covidwho-1150692

ABSTRACT

Although widely prevalent, Lyme disease is still under-diagnosed and misunderstood. Here we followed 73 acute Lyme disease patients and uninfected controls over a period of a year. At each visit, RNA-sequencing was applied to profile patients' peripheral blood mononuclear cells in addition to extensive clinical phenotyping. Based on the projection of the RNA-seq data into lower dimensions, we observe that the cases are separated from controls, and almost all cases never return to cluster with the controls over time. Enrichment analysis of the differentially expressed genes between clusters identifies up-regulation of immune response genes. This observation is also supported by deconvolution analysis to identify the changes in cell type composition due to Lyme disease infection. Importantly, we developed several machine learning classifiers that attempt to perform various Lyme disease classifications. We show that Lyme patients can be distinguished from the controls as well as from COVID-19 patients, but classification was not successful in distinguishing those patients with early Lyme disease cases that would advance to develop post-treatment persistent symptoms.


Subject(s)
Leukocytes, Mononuclear/immunology , Lyme Disease/genetics , Adult , COVID-19/genetics , COVID-19/immunology , Cytokines/genetics , Cytokines/immunology , Female , Follow-Up Studies , Humans , Leukocytes, Mononuclear/chemistry , Lyme Disease/blood , Lyme Disease/immunology , Machine Learning , Male , Middle Aged , Prospective Studies , RNA-Seq
6.
J Med Internet Res ; 22(11): e24018, 2020 11 06.
Article in English | MEDLINE | ID: covidwho-979821

ABSTRACT

BACKGROUND: COVID-19 has infected millions of people worldwide and is responsible for several hundred thousand fatalities. The COVID-19 pandemic has necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods to meet these needs are lacking. OBJECTIVE: The aims of this study were to analyze the electronic health records (EHRs) of patients who tested positive for COVID-19 and were admitted to hospitals in the Mount Sinai Health System in New York City; to develop machine learning models for making predictions about the hospital course of the patients over clinically meaningful time horizons based on patient characteristics at admission; and to assess the performance of these models at multiple hospitals and time points. METHODS: We used Extreme Gradient Boosting (XGBoost) and baseline comparator models to predict in-hospital mortality and critical events at time windows of 3, 5, 7, and 10 days from admission. Our study population included harmonized EHR data from five hospitals in New York City for 4098 COVID-19-positive patients admitted from March 15 to May 22, 2020. The models were first trained on patients from a single hospital (n=1514) before or on May 1, externally validated on patients from four other hospitals (n=2201) before or on May 1, and prospectively validated on all patients after May 1 (n=383). Finally, we established model interpretability to identify and rank variables that drive model predictions. RESULTS: Upon cross-validation, the XGBoost classifier outperformed baseline models, with an area under the receiver operating characteristic curve (AUC-ROC) for mortality of 0.89 at 3 days, 0.85 at 5 and 7 days, and 0.84 at 10 days. XGBoost also performed well for critical event prediction, with an AUC-ROC of 0.80 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. In external validation, XGBoost achieved an AUC-ROC of 0.88 at 3 days, 0.86 at 5 days, 0.86 at 7 days, and 0.84 at 10 days for mortality prediction. Similarly, the unimputed XGBoost model achieved an AUC-ROC of 0.78 at 3 days, 0.79 at 5 days, 0.80 at 7 days, and 0.81 at 10 days. Trends in performance on prospective validation sets were similar. At 7 days, acute kidney injury on admission, elevated LDH, tachypnea, and hyperglycemia were the strongest drivers of critical event prediction, while higher age, anion gap, and C-reactive protein were the strongest drivers of mortality prediction. CONCLUSIONS: We externally and prospectively trained and validated machine learning models for mortality and critical events for patients with COVID-19 at different time horizons. These models identified at-risk patients and uncovered underlying relationships that predicted outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Machine Learning/standards , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Acute Kidney Injury/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Cohort Studies , Electronic Health Records , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Hospitals , Humans , Male , Middle Aged , New York City/epidemiology , Pandemics , Prognosis , ROC Curve , Risk Assessment/methods , Risk Assessment/standards , SARS-CoV-2 , Young Adult
7.
BMJ Open ; 10(11): e040736, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-947830

ABSTRACT

OBJECTIVE: The COVID-19 pandemic is a global public health crisis, with over 33 million cases and 999 000 deaths worldwide. Data are needed regarding the clinical course of hospitalised patients, particularly in the USA. We aimed to compare clinical characteristic of patients with COVID-19 who had in-hospital mortality with those who were discharged alive. DESIGN: Demographic, clinical and outcomes data for patients admitted to five Mount Sinai Health System hospitals with confirmed COVID-19 between 27 February and 2 April 2020 were identified through institutional electronic health records. We performed a retrospective comparative analysis of patients who had in-hospital mortality or were discharged alive. SETTING: All patients were admitted to the Mount Sinai Health System, a large quaternary care urban hospital system. PARTICIPANTS: Participants over the age of 18 years were included. PRIMARY OUTCOMES: We investigated in-hospital mortality during the study period. RESULTS: A total of 2199 patients with COVID-19 were hospitalised during the study period. As of 2 April, 1121 (51%) patients remained hospitalised, and 1078 (49%) completed their hospital course. Of the latter, the overall mortality was 29%, and 36% required intensive care. The median age was 65 years overall and 75 years in those who died. Pre-existing conditions were present in 65% of those who died and 46% of those discharged. In those who died, the admission median lymphocyte percentage was 11.7%, D-dimer was 2.4 µg/mL, C reactive protein was 162 mg/L and procalcitonin was 0.44 ng/mL. In those discharged, the admission median lymphocyte percentage was 16.6%, D-dimer was 0.93 µg/mL, C reactive protein was 79 mg/L and procalcitonin was 0.09 ng/mL. CONCLUSIONS: In our cohort of hospitalised patients, requirement of intensive care and mortality were high. Patients who died typically had more pre-existing conditions and greater perturbations in inflammatory markers as compared with those who were discharged.


Subject(s)
COVID-19/blood , Critical Care , Hospital Mortality , Hospitalization , Pandemics , Adolescent , Adult , Aged , Aged, 80 and over , C-Reactive Protein/metabolism , COVID-19/epidemiology , COVID-19/mortality , Comorbidity , Critical Care/statistics & numerical data , Female , Fibrin Fibrinogen Degradation Products/metabolism , Hospitals , Humans , Lymphocytes/metabolism , Male , Middle Aged , New York City/epidemiology , Procalcitonin/blood , Retrospective Studies , Risk Factors , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL